Training Autoencoders in Sparse Domain

نویسندگان

  • Biswarup Bhattacharya
  • Arna Ghosh
  • Somnath Basu
  • Roy Chowdhury
چکیده

Autoencoders (AE) are essential in learning representation of large data (like images) for dimensionality reduction. Images are converted to sparse domain using transforms like Fast Fourier Transform (FFT) or Discrete Cosine Transform (DCT) where information that requires encoding is minimal. By optimally selecting the feature-rich frequencies, we are able to learn the latent vectors more robustly. We successfully show enhanced performance of autoencoders in sparse domain for images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Autoencoders in Sentiment Analysis

This paper examines the utilization of sparse autoencoders in the task of sentiment analysis. The autoencoders can be used for pre-training a deep neural network, discovering new features or for dimensionality reduction. In this paper, sparse autoencoders were used for parameters initialization in deep neural network. Experiments showed that the accuracy of text classification to a particular s...

متن کامل

Feature Transfer Learning for Speech Emotion Recognition

Speech Emotion Recognition (SER) has achieved some substantial progress in the past few decades since the dawn of emotion and speech research. In many aspects, various research efforts have been made in an attempt to achieve human-like emotion recognition performance in real-life settings. However, with the availability of speech data obtained from different devices and varied acquisition condi...

متن کامل

A Winner-Take-All Method for Training Sparse Convolutional Autoencoders

We explore combining the benefits of convolutional architectures and autoencoders for learning deep representations in an unsupervised manner. A major challenge is to achieve appropriate sparsity among hidden variables, since neighbouring variables in each feature map tend to be highly correlated and a suppression mechanism is therefore needed. Previously, deconvolutional networks and convoluti...

متن کامل

Image Compression: Sparse Coding vs. Bottleneck Autoencoders

Bottleneck autoencoders have been actively researched as a solution to image compression tasks. However, we observed that bottleneck autoencoders produce subjectively low quality reconstructed images. In this work, we explore the ability of sparse coding to improve reconstructed image quality for the same degree of compression. We observe that sparse image compression produces visually superior...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017